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SUMMARY 

Multiple scale methods based on reproducing kernel and wavelet analysis are developed. These permit the 
response of a system to be separated into different scales. These scales can be either the wave numbers 
corresponding to spatial variables or the frequencies corresponding to temporal variables, and each scale response 
can be examined separately. This complete characterization of the unknown response is performed through the 
integral window transform, and a space-scale and time-frequency localization process is achieved by dilating the 
flexible multiple scale window function. An error estimation technique based on this decomposition algorithm is 
developed which is especially useful for local mesh refinement and convergence studies. This flexible space-scale 
window function can be constructed to resemble the well-known unstructured multigrid and hp-adaptive finite 
element methods. However, the multiple scale adaptive refinements are performed simply by inserting nodes into 
the highest wavelet scale solution region and at the same time narrowing the window function. Hence hp-like 
adaptive refinements can be performed without a mesh. An energy error ratio parameter is also introduced as a 
measure of aliasing error, and critical dilation parameters are determined for a class of spline window functions to 
obtain optimal accuracy. This optimal dilation parameter dictates the number of nodes covered under the support 
of a given window function. Numerical examples, which include the Helmholtz equation and the 1D and 2D 
advection-diffusion equations, are presented to illustrate the high accuracy of the methods using the optimal 
dilation parameter, the concept of multiresolution analysis and the meshless unstructured adaptive refinements. 
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1. INTRODUCTION 

Owing to geometry, boundary conditions, body forces and strong advection, high gradients and mixed 
mode (high, medium and low frequencies) response are often encountered during the solution of 
complex physical problems. Exact solutions are usually not available. Numerical solutions based on 
the traditional finite element method (FEM) require a fine mesh, and local mesh refinement may not be 
reliable when the exact solution is unknown. In order to overcome this difficulty, multiple scale 
analysis by reproducing kernel and wavelet particle methods is established. 

Multiple scale analysis has its origin in signal analysis. Wavelet analysis is a contemporary science 
in image processing, but one major drawback in its application to computational mechanics is its 
incapability of handling complex boundary conditions. Reproducing kernel particle methods 
(RKPMs), proposed by Liu et al.,'+ have the ability to adjust to different boundary conditiqns with 
a boundary correction term. Adopting this advantage of RKPMs, new multiple scale analysis methods 
which can handle arbitrary geometry are developed in this paper. 

* This is an extended version of a paper presented at the 2nd Japan-U.S. Symposium on Finite Element Methods in Large-Scale 
Computational Fluid Dynamics, Tokyo, 1 6 1 6  March 1994. 
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For computational mechanics, system discretization is inevitable. When a system is discretized, 
aliasing is introduced into the response. If the response of the system is band-limited, which means that 
the response is non-zero only in a certain interval of its Fourier transform domain, a solution free of 
aliasing error is readily calculated. However, for a complex system, aliasing may interact with the high 
frequency part of the response and it becomes impossible to separate them clearly. In these cases, 
reducing the effect of aliasing is a major step to improving the solution. 

However, aliasing is not without its redeeming features for multiple scale analysis. Since aliasing is a 
byproduct of undersampling, its portion in the total solution is a good index of error estimation. 
Furthermore, the multiple scale RKPM has a built-in time-frequency or space-wave number 
localization ability. From this advantage of the multiple scale RKPM, local aliasing estimation can 
easily be determined. Furthermore, using this local aliasing information, local refinement or hp-like 
adaptive refinement without a mesh can be carried out without the help of the exact solution. 

In the next section, the multiple scale wavelet particle method is developed. In Section 3 the 
multiple scale reproducing kernel particle method is derived. In Section 4 a window dilation parameter 
and a simple convergence parameter are introduced to control the accuracy and convergence of 
solution. The analogy between the multiple scale RKPM and the hp-adaptive finite element method is 
also discussed. Exaniples of multiple scale decomposition and meshless unstructured adaptive 
refinements using the highest wavelet scale solutions are presented in Section 5 .  Conclusions are given 
in Section 6. 

2. DEVELOPMENT OF MULTIPLE SCALE WAVELET PARTICLE METHODS (WPMS) 

2. I. Review of multiresolution analy~is”~ 

The framework of a multiresolution analysis consists of a sequence of nested closed subspaces 

(0) = v, c . *  * c v1 c vo c v-, c . . . c v-, = L2(R). 

The basis functions which generate these subspaces are scaling functions. Scaling functions are a 
family of functions which are generated by the translation (n) and dilation (m) of a single function +(x). 
This family of functions, denoted by 4mn(x), is given by 

X 
4 , ~ x )  = 2 ~ / 2 4 ( p  - n), m, n E 9 = [. . . , - I ,  0 , 1 , .  . .I, ( 14  

or in normalized form (with respect to the mesh parameter Ax) by 

An illustration of the translation and dilation for a given window function is presented in Figure 1. 
As can be seen in subsequent development, through the implementation of this type of window 
function and the exploitation of the Fourier transform it is possible to develop a new type of shape 
function that is closely related to finite elements, and these new shape functions can still be used in the 
usual Galerkin formulation. The derivative of the shape function, and thus reproducing kernel, can be 
obtained by direct differentiation without a finite element mapping. The two parameters in the scaling 
h c t i o n  provide the ability to translate and dilate the window function. Translation is required to move 
the window function around the domain, since the window functions themselves have a compact 
support. f i e  ability to translate replaces the need to define elements. The dilation parameter is used to 
provide refinement. This dilation parameter also controls the convergence rate of the multiple scale 
RKPM. As shown in the numerical examples,’ the rate of convergence of the &-norm (HI-norm) of a 
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Figure 1. Examples of translation ( n )  and dilation (m) 
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smooth Laplacian solution varies from 2 to 16 (from 1 to 15) for a Gaussian window and from 2 to 5 
(from 1 to 4) for a cubic spline window by simply changing the refinement or dilation parameter of a 
single window function. This combination of translation and dilation produces a meshless p-like 
adaptive variable node multiple scale RKPM. The larger the dilation parameter, the smaller the 
frequency band is in the solution and the larger the critical time step becomes in dynamic analy~es.~ 
The refinement parameter transformation between the time and frequency domain (or space and wave 
number) controls the solution space. This introduces the ability to choose the size of the frequency or 
wave number range in the calculation. 

The complementary subspace W, of V,,, is defined by 

vm-l = v, + W". 

A wavelet, which is a function that generates the spaces W,,,, m E 5, in the same manner as a scaling 
function $ ( x )  generates the spaces V,, m E 3, is defined by 

(2) 

W, = {+mn, n E 51. (3) 

This family of functions, denoted by t,bmn(x), is given by 

or in normalized form (with respect to the mesh parameter Ax) by 

From (2)  this family of subspaces of L2(R) gives a direct sum decomposition of L2(R) such that 
2 

L (R) = + (V-z - V-I )  + (V-l - VO) + (VO - Vl)  + ... = ... + W-1 + Wo + WI + * * .  . ( 5 )  

A wavelet + in L2(R) is called an orthogonal wavelet if { t ,bmn} satisfies 

(+rnn, *k/) = 8 m k  d n l ~  (6) 

where (.) is the inner product operator and dmk is the Kronecker delta. 
If t,b is an orthogonal wavelet, then the direct sum in (5) becomes an orthogonal sum 

L2(R) = . . * CB W-1 @ Wo @ Wi + . . . . (7) 
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Figure 2. Multiresolution decomposition algorithm 

For any given function u E L2(R) there exists a unique decomposition 

+w-l + w o + w 1  + . . . ,  (fw u =  . . .  

where w, E W,. The level m resolution of the given function u is represented by 

u 25 urn = W,+] + wm+2 + .  . . . (8b) 

Since V, = Vmtl + W,,, for any m E 9, u, has a unique decomposition 

urn = um+1 + Wm+I t 

where umtl E V,+] and w , , ~  E W,,,. By repeating this process, we have a decomposition algorithm 
from the finest scale to the coarser ones as depicted in Figure 2. 

For a simple illustration and a comparison with linear finite elements, linear orthogonal scaling 
functions and wavelets are discussed in this paper. The equations for linear scaling functions and 
wavelets are given in Appendix I. For orthogonal scaling functions and wavelets the reconstruction 
formula is given by 

(9) 

for the level M resolution of given function u the reconstruction formula is given by 
M 

UM = C (u ,  4 M n ) 4 M n ( x )  = C C (u, $rnn)$mn(X).  ( 1 Ob) 
n € E  m=M n&? 

2.2. Multiple scale wavelet particle method 

Particle forms of wavelet analysis can be achieved by breaking down the inner product terms of (1 0) 
into subinterval integration (B"(n)) and assuming that the response u(x) is constant in each of the 
subintervals, i.e. 

or, using a numerical quadrature integration scheme, 
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where B"(n) is the support of the mth scale window function at translation position n and A 6  is the ith 
nodal volume evaluated at xi. Substituting (1 1) into (1 0) and applying the decomposition algorithm 
given in Section 2.1, we obtain our desired discrete multiresolution of u(x) as 

4 x 1  x u m ( X )  = Wrn+l(x) + wrn+2(x) + wrn+3(x) + . ' 9  (12) 

where 

with 

Here NP is the total number of points used in the particle method and nl  and n2 are the left and right 
limits of wavelet translation numbers respectively. The boundary correction for a finite domain 
problem in this wavelet particle method is achieved by applying the mirror-image outside the domain. 
A review of the mirror-image boundary correction technique is given in Appendix 11. For most cases 
the best result is obtained by choosing m = 0 in the normalized form (lb). After the finest scale result 
has been derived, all other coarser scale results can be obtained automatically by the decomposition 
algorithm. 

2.3. Reproducing kernel and wavelet particle method 

An intrinsic property of polynomial-based wavelets is the requirement that 

x"$(x)& = 0 ,  m = 0, 1,. . . , q,  (15) J 
where q is the degree of the polynomial of the mother wavelet $(x). From (1 5) it follows that a qth- 
order wavelet cannot represent the 1, x ,  x2, . . . , x4 parts of the solution. To remedy this deficiency, we 
shall represent a function u(x) by 

u(x) = uW(x) + P(x)c,  (16) 
where u"(x) is the part of the solution that is obtained by the multiresolution wavelet reconstruction as 
given in Section 2.2. P(x)  = { P I ( x ) ,  P2(x),  . . . , Pn(x)} and c = { c , ,  c2, . . . ,  are the vectors of the 
n linearly independent functions and unknown coefficients respectively. Superscript T denotes the 
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transpose. We can consider the term P(x)c as the residual representation of u(x) within a bounded 
domain. If [PI@), P2(x)] is chosen to be [I, XI, then u(x) can be given as 

u(x) = U W ( X )  + [l, x] . [::I 
The constants cl and c2 can be derived by premultiplying both sides by PT and a local window 

function 4((x-y)/ao) centred at the point of interest x and integrating over the whole domain V: 

It is noted that a. is the dilation parameter. Rearranging terms in (1 S), we get 

Define a 2 x 2 matrix M(x) as 

Then the constants cl and c2 can be shown to be 

[3 = M-"/v~] .6 ' )4f3)  dv - jv~]."014f2) 4 .  

U ( X )  = uw + [ l  x1M-I [J" [ ; ] u W d r 5 )  dY - J" [ ; ] . -04r3)  dY] 

= U W ( 4  + [1 x1M-I [ ; ]ue)4f53 dY 

- J, [ 1 x1M-I [ ; ] u W W 4  f3) dY. 

(21) 

Substituting (21) into (17), we have 

(22) 

Following the procedure described by Liu et a1.,l4 the term [ l  x]M-'[l yIT can be expressed in 
terms of the moments of the window function, i.e. 

and a correction function C(x, y, ao) is defined as 

where 
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(24b) 

The moments mo, m1 and m1 are defined as 

Equation (1 7) can be .written in the more general form 

It is noted that the second term in (26) is the reproducing kernel approximation presented by Liu er 
~ 1 . ' ~  The first term is the multiresolution wavelet part, whereas the third term couples the two 
methods. It is interesting to point out that by a proper choice of ao, the contribution of the coupling 
term can be shown to be negligible. With this construction the wavelet and reproducing kernel terms 
give the high and low frequency (or the fine and coarse scale) representations of the solution u 
respectively. It is also noted that uW(x) can be expressed by other continuous or discrete multiple scale 
reproducing kernels. Via this decomposition, adaptive refinements by simply inserting nodes in the 
unresolved high frequencylwave number (or fine scale) region can be developed, but without a mesh. 

To firher examine this multiple frequencylwave number band wavelet approximation, we let 

Substituting (27) into (26) yields 

The approximation of the wavelet hnctions $mn(x) through the reproducing kernel, denoted by ~,,(x), 
is 

u 

It is now clear from (29) that $mn(x) is sjmply an approximation of $,,(x) via the reproduc- 
ing kernel reconstruction. It is expected that $,(x) is very close to $mn(x) for low frequencylwave 
number wavelets. Consequently, the contribution from the low frequencylwave number wavelets is 
close to zero. Depending on the choice of ao, 4 and $, the reproducing kernel might not be able to 
reconstruct the high frequencylwave number part of the solution (first term in (28)). These high 
frequencylwave number components can be readily picked up by multiresolution wavelet analysis. 
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3. MULTIPLE SCALE REPRODUCING KERNEL PARTICLE METHOD (FXPM) 

The reproducing kernel particle method developed by Liu et ~ 1 . ' ~  is given by 

or its discrete form 

With the help of the boundary correction term C(u0, x, xi), the reproducing of a given hnction can be 
treated as a finite convolution of the given fimction and the kernel function +(duo). From the Fourier 
transform study we note that this kernel function serves as a lowpass filter in the reconstruction 
procedure. The multiple scale RKPM is defined by a family of kernel functions (bm(x) given by 

Their Fourier transform relationship is given by 

$ m < O  = $o(2m~>. 

The wavelets corresponding to these kernel functions are defined by 

IcIm+I(x) = 4 m ( x )  - + r n + ~ ( ~ ) .  

The Fourier transform of (32a) implies 

$ m + l ( t )  = $m<t;> - 4 m + l ( t > .  

An example using a Gaussian function as the kernel function is illustrated in Figure 3. 

- 0 2  

I ?  

Fourier Transform Domam 

2 5 3  - 5 - 3 - 1  1 3  5 0  I 

Figure 3.  Kernel fhcuon and corresponding wavelet function 
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By substituting (32a) into (30a) and repeating it for as many levels as we need, a multiple scale 
decomposition of a given response is obtained as 

Uh(X)  = uo(x) (finest scale) 
(two-level decomposition) 
(three-level decomposition) 

= WI(X) + U I ( 4  

= w1 (x) + WZ(X) + u2(4 

(up to arbitrary levels), (33) - _ .  . . 
where 

with 

$m(x - Y )  = C(2m-1ao,x,u>4m-l(x - y )  - ~(2~ao,x,y)+, (x  -Y) .  (34c) 

Similarly to the multiple scale wavelet particle method, the multiple scale RKPM always starts from 
the finest scale and the various levels of the response can be derived by the decomposition algorithm. 

Remark 

As proposed by Liu et al.,1-4 with the boundary correction term the shape function of the RKPM 
satisfies the consistency condition but does not satisfy the Kronecker delta property. To satisfy the 
Kronecker delta property, let 

NP NP 

j =  I j=I 
u~(x;) = C N,(x~)u~ C Aguj, 

where A ,  = N,(xi); then 

With the help of this linear transformation we have 

(35) 

This new shape hnction Ei(x) will satisfy the Kronecker delta property. However, from numerical 
experiments the accuracy of the solution and its convergence rate are mainly effected by the chosen 
dilation parameter, which will be discussed in the next section. Because the new shape function Ei(x) is 
based on a linear transformation of the shape function N;(x), both shape functions give identical 
accuracy and convergence rate. 

4. CHOOSING THE OPTIMAL DILATION PARAMETER a. 

4.1. An energy approach 

A practical approach for choosing the dilation parameter a0 for the reproducing kernel window is to 
determine the interaction between the size of the given window and the sampling rate of the given 
nodal system in the Fourier transform domain. The Fourier transform of the reproducing kernel 
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window function 4(x) is also a windowA$(<) in the transform domain. The definitions of the centre <* 
and radius A 4  of a window function $(5)  are given by5 

The width of the window function is defined by 2A4(5). The norm of &<) is defined as 

114112 = (J” -m i ( < ) z d < ) ” 2  

The ratio of the area located inside the sampling rate region to the whole area under the window 
i ( 5 )  is defined as 

where &(t) is the window area located in a given interval [ - 5 ~ ,  &,,I and tN = n/hx (sampling rate). 
In signal analysis this is the energy error ratio in the reconstruction proced~re.~ 

For a Gaussian window 

The energy error ratio is given as 

1 
4($) = - aofi  exp [ - (;)2] 7 

where a. is the dilation parameter of the window and erf(.) is the error function. The error function is 
defined as 

(44) 

The relationship between dEIE and aon/,/2Ax at the specific values used in this paper is given in Table 
I (a bold number denotes an optimal parameter). 

Table I. Gaussian function 

dEIE (%) aoa1fiA.x dElE (%) a o d f i h  

0.001 3,12341 3275 1 1.82 1386383 
0.01 2.751063909 8 1.237922073 
0.1 2.326753771 20 0.9061938125 
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Figure 4. (a) Three window functions: FEM, Gaussian with dEIE = 0.01% and Gaussian with dEIE = 8%. @) Their Fourier 
transfoms 

A large window (in the function domain) filters out the fine scales (smail wave numbers or high 
frequencies) which are caused by sampling aliasing; consequently, oscillation in the solution may 
occur. In contrast, a small window (in the function domain) may introduce aliasing but will cover wider 
scale/frequency bands. From the definition of the energy error ratio the linear finite element shape 
function, which is a compactly supported triangular window, may cause approximately 8% energy 
error. For a Gaussian window, from experience, dE/E=O.Ol% will give very good solutions and can 
minimize oscillatory solutions. Figure 4 shows the shapes of the linear FEM, Gaussian with 
dEIE = 8% and Gaussian with dEIE = 0.01% windows in the function and Fourier transform domains. 
The Gaussian window with dE/E = 8% has a shape similar to that of the linear FEM window in both 
the function and Fourier transform domains. It is clear that the FEM window is compactly supported in 
the space domain but the Gaussian window has infinite support; the Gaussian window decays rapidly 
outside the ideal lowpass filter region in the transform domain but the FEM window has a side-lobe 
towards infinity (see Figure 4). In general these two windows show similar performance in terms of 
absolute accuracy and convergence rate, but for a band-limited solution, which is non-zero in a certain 
range in the transform domain and zero outside the limit, the Gaussian window will give more accurate 
results. This is because the side-lobe of the FEM window will introduce aliasing in the reconstruction 
procedure. This will be illustrated via a Helmholtz equation in Section 5.1. Similar frequency studies 
of the spline family are presented in Figure 5 and Table I1 (a bold number denotes an optimal 
parameter). The detailed analysis of the spline family (from box function to cubic spline) is given in 
Appendix 111. As can be seen from Figure 5@) ,  the side-lobes of the spline family in the frequency 
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Figure 5. (a) Four spline functions (for a,, = 1): box function, hat function, quadratic spline and cubic spline. (b) Their Fourier 

transforms 

domain decrease as the order of the window function increases. This decrease in side-lobe will prevent 
additional high frequency aliasing from being introduced into the system response. 

For a given window function (usually in terms of polynomials) the number of nodes covered under 
the support can be determined with this choice of optimal dilation parameters to yield the optimal rate 
of convergence as well as absolute accuracy. Another way to interpret this result is as the best match of 
the number of nodes with the order of the global shape function, which is related to the window 
function used. 

Table 11. Spline family 

dEIE (%) Box Hat Quadratic Cubic 

0.00 1 63770.97 46.582800 10.458865 12,58643 
0.01 6367.642 21.77231 8 8.422090 6.525427 
0.1 637.1728 9.779085 4.160637 3.56503 1 
1 64.62777 4.080620 3.358089 2.822957 

10 5.33 1476 2.66750320 2.216856 1.829333 
20 3.36055 3 2.102112 1,742766 1.248679 
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4.2. hp-like adaptivity by inserting nodes and translation and dilation of a single scaling function 

It is noted that the choice of an optimal dilation parameter of a given window function is 
analogous to choosing the optimal order of the polynomial resulting from the multiple scale 
RKPM. It is shown in Reference 1 that by changing the size of 'a', the rejnement or dilation 
parameter of a single window function, the rate of convergence of the L2-norm (HI-norm) of a 
smooth Laplacian solution varies from 2 to 16 (from 1 to 15) for a Gaussian window and from 2 
to 5 (from 1 to 4) for a cubic spline window. This shows that the multiple scale RKF'M has a 
similar feature of the adaptive p-finite element methods. However, the higher convergence rate, or 
equivalently the high value of p, can be achieved simply by increasing the size of the refinement 
parameter of a single window hc t ion .  This avoids the awkward implementation of the traditional 
p-finite elements and there is no apprehension of the compatibility (or continuity) along the 
element boundaries of the hp-finite element mesh, since RKPM requires only a set of nodes and 
the global shape functions can be C"! 

As in p-finite element methods, exponential convergence of smooth solutions can be achieved for 
this class of multiple scale RKF'Ms. However, if there is a discontinuity in the solution, e.g. a shock, 
the high convergence behaviour is lost. h-like adaptive reproducing kernel particle methods, 
comparable with the h-finite element method, can be developed by inserting nodes in the high gradient 
region and at  the same time narrowing the size of the window function (i. e. a smaller 'a to pick up the 
Jine scale structure of the response. This zooming-in process together with the addition of nodes will 
result in an hp-like adaptive rejnement algorithm. 

Based on the multiple scale decomposition and the highest wavelet scale response, a convergence 
parameter or an error estimation indicator as defined in Section 4.3 can be employed to locate the 
adaptivity regions. In our numerical examples the refinement parameter is chosen to be the optimal 
parameter and the adaptive mesh parameter (Ax and Ay) are chosen to be proportional to the square 
root of the nodal area multiplied by the initial 'mesh'size h (initial Ax and Ay). A summary of the 
similarities between the hp-adaptive finite element method and the multiple scale reproducing kernel 
particle method is given in Table 111. 

It is further emphasized that the hp-finite element method requires the creation of an hp-mesh, and 
low and higher order element shape functions need to be fabricated so that the different order elements 
along element boundaries are compatible, whereas in the multiple scale reproducing kernel particle 
method the hp-equivalent adaptive refinement is a built-in condition. The adaptive refinement is 
accomplished by a single p-order (or C") flexible space-scale window function that translates and 
dilates covering all the nodes, including those inserted along the sharp gradient regions, in the 
computational domain. 

Table 111. Similarities between hp-adaptive method and multiple scale RKPM 

Multiple scale RKPM 

Small dilation parameter a 
Large dilation parameter a 
Variable dilation parameter a 

Inserting nodes, reduce size of 
dilation parameter a 
Inserting nodes together with 
flexible dilation parameter a 

hp-Finite element method 

Low order shape functions 
Higher order shape functions 
p-Finite elements 

Lower order h-adaptive finite 
elements 
hp-Adaptive finite elements 

Remarks 

Low computational cost 
Higher computational cost 
Single flexible window function 
versus higher order shape 
functions 
Nodes versus h-mesh 

Nodes with flexible window 
versus hp-mesh 
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4.3. Convergence parameter 

The error norms are defined as 

Jn ~ 

A convergence parameter E is defined by 

where Uhigh is the highest band solution from the multiple scale decomposition algorithm and utOtal is 
the total solution. 

5. NUMERICAL EXAMPLES 

Three examples are given in this section: the Helmholtz equation (band-limited) and the 1D and 2D 
advection-difision equations (non-band-limited). For the Helmholtz and 1 D advection-diffision 
equations the computation is accomplished by the linear FEM (regular FEM for Helmholtz equation 
and stabilized FEM for advection-difision equation), RKPM and W M .  The linear finite element 
solution is computed for comparison. The RKPM is evaluated at two levels: dE/E=8% and 
dE/E = 0.01%. See Table I for the dilation parameter a. dE/E = 8% is for comparison with the finite 
element method and dE/E = 0.01% is to show how aliasing elimination can improve the solution. The 
WPM computation is performed with the finest scale (m=O in normalized formulation) scaling 
function. In Section 5.2 the results from the RKPM are separated into four band solutions by the 
multiple scale decomposition and their applications are also demonstrated. The computation of the 2D 
advection-difision equation is performed by a cubic spline window. The 2D decomposition 
algorithm, hp-like adaptive refinements and results are presented in Section 5.3. 

Uniform and irregular spacings are chosen in this paper as in the nine-node example shown in 
Figure 6. For the irregular spacing case Ax2 is used to derive the dilation parameter a in the RKPM and 
( A x 1  + Ax$2 is used as the normalization parameter Ax in the wavelet computation. 

1 2 3 4 5 6 1 8 9  
G3 - m fi .b 

-A, - - 9 

Uniform spacing ( 1  1 1 1 ) 

1 2 3  4 5  6 1  8 9  
0 , r . -  e. " " 

Irrcgularqming (2 I 2 .  I ) 

Figure 6. Different spacings used in numerical examples 
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5.1. Helmholtz equation 

The standard 1D Helmholtz equation is given as 

u,= + lu = 0, 

u(0) = 0, 

with boundary conditions 

u(L) = 1. 

For I =- 0 the exact solution is given as 

sin(Jh) 
sin(,/lL) . U =  

(474 

(48) 

The Fourier transform of the Helmholtz equation is a single peak, which is definitely band-limited. 
This single peak is located at ,/A in the Fourier transform domain. If the sampling rate is larger than 
27t/JI ,  i.e. Ax c 271141, then this problem can be considered well-sampled. 

The H I -  and L2-norms are listed in Tables IV and V Two interesting results can be observed. 

1. Because of the side-lobe effect of the linear FEM, the Gaussian window with dE/E = 8% gives 

2. With the same window function a smaller dElE ratio gives better absolute accuracy, but with 
better accuracy than that of the FEM as predicted in Section 4. 

similar convergence rates. 

5.2. 1 D advection-dirffusion equation 

The steady state advection-difision problem can be stated for the one-dimensional case as 

u , ~  - a ~ , ~  = b(x) in 52, (49) 

with boundary conditions 

u(xg) = u1 on rg, 

Table I\! (a) Error in numerical solution of Helmholtz equation (Jl = 1 . 2 ~ )  in uniform spacing case 

9 nodes 17 nodes 33 nodes 65 nodes 

Finite element method 0.777306 0.450348 0.178571 5.238338 x 
Wavelet particle method 0.7773 1 0.45035 0.17857 5.23833 x lop2 
RKPM, d E E  = 8% 0.66821 0.32202 0.10112 2.69610 x lop2 
RKPM, d.EIE=O.Ol% 4.415052 x 1.805416 x lop3 3.764297 x 7.070435 x 

Table I\! @) Error in first derivative of numerical solution of Helmholtz equation (\/A = 1.271) in uniform 
spacing case 

~ ~~ ~~~ ~~~ 

9 nodes 17 nodes 33 nodes 65 nodes 

Finite element method 0.859291 0.509883 0.224066 8.715449 x lop2 
Wavelet particle method 0.85929 0.50988 0.22407 8.71545 x 10K2 
RKPM, dEIE = 8% 0.74062 0.37557 0.14177 5.64656 x lo-’ 
RKPM, dEIE=O.Ol% 5.798656 x 7.885859 x 3.215679 x 1.208999 x lop3 
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Table V. (a) Error in numerical solution of Helmholtz equation (41 = 1 . 2 ~ )  in irregular spacing case 

9 nodes 17 nodes 33 nodes 65 nodes 

Finite element method 2.748756 0.498553 0.21 8961 6.750198 x lo-’ 
Wavelet particle method 0.803013 0.450663 0.1 99713 5.282151 x lo-’ 
RKPM, dElE = 8% 1.022333 0.353 102 0.136492 6.764163 x lo-’ 
RKPM, dEI.E=O.Ol% 3-585980 x 5.536716 x l o p 3  1.192248 x lop3 3.785657 x 

Table V. (b) Error in first derivative of numerical solution of Helmholtz equation (41 = 1 . 2 ~ )  in irregular 
spacing case 

9 nodes 17 nodes 33 nodes 65 nodes 

Finite element method 3.042870 0.568192 0.263465 0.10021 3 
Wavelet particle method 0.861549 0.529122 0.229015 8.788850 x lo-’ 

RKPM, dEIE=O.Ol% 6.386343 x l o p 2  1.877033 x lo-’ 8.186295 x 4.760357 x l o p 3  
RKPM, d.ElE = 8% 1.087927 0.406603 0,193244 6.764163 x lop2 

u,x(xh) = u; on r h ,  (50b) 

where R is the domain (i.e. 0 < x =$ L), rg is the essential boundary condition and r h  is the natural 
boundary condition. The boundary is r = rg U r h  and rg fl r h  = (@}; (.), denotes the derivative 
with respect to x,  u is the scalar unknown, u is a given constant and b(x) is a given source term. The 
parameter u is the advective velocity divided by the diffusion coefficient. The Peclet number is 
therefore 

a Ax 
2 

P e = - .  

The source term b(x) can be caused by a chemical reaction. Following Hughes et a1.,8 the weak form 
of equation (49) with the least square term can be written as 

In w(u,, - uu,, - b) dQ + ( w , ~  - uw,,)z(u,, - uu,, - b) dQ = 0, (51) 

where w is an arbitrary test function and z is a parameter. Using the approximation uh and wh for the 
functions u and w, we obtain the usual matrix equation. The choice of z depends on the parameter u 
and the nodal distance Axk = xk+l  - x k .  For the advection-dominated case an estimation of 7 is given 
by8 

Ax 
2u 

z = -  

where u is the advection coefficient introduced earlier, K. is the diffusion coefficient and Ax is the 
nodal distance. We are currently investigating a sharper estimation of z for the RKPM. 
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The following numerical examples use a highly irregular source term to produce a non-linear 
solution with two peaks. The source term consists of two terms that are very similar and summed 
together. Each part is 

2c1zc2iec~~(x-x~~) ( e2cz~(x-xo~) - l)sech2[cli(x - xol)] 
(e2Czt(x-xd + 1)' b,(x) = 

where xoi governs the position of the peak, cli controls the sharpness on the right side of the peak and 
c2i controls the decay on the left side. The resulting source term is 

with the parameters 

i =  1 i = 2  

XOi 1.7 3.2 

C2i 4.0 5.0 
Cli 50 50 

ki 0.5 1 .o 

where the parameter k determines the size of the peak. The source term using these coefficients is 
shown in Figure 7. 

The homogeneous solution of the advection-difision equation in the domain 0 d x < 4 with 
boundary conditions u(0) = 0 and u(4) = 1 becomes 

e m - l  
e4a - 1 

u (x) = -. (55) 

The particular solution produced by b(x) is given by 

where 

with the appropriate constants from the table above. The parameter 01 is set to 50. 
The computed solutions of the advection-difision equation using several different methods are 

shown in Figures 8-10 (uniform spacing). For this non-band-limited problem the RKPM with the 



A

m u ,  I 

1 
0 0.5 1 1.5 2 2 5  3 3.5 4 

Figure 7. Source term used in 1D advection4iffision equation 

smaller dEIE ratio shows very high absolute accuracy and a superior convergence rate. From Figure 8, 
oscillations occur in the small dEIE ratio case when the mesh is coarse. After adding high frequency 
wavelet bands, these oscillations are eliminated. For uniform nodal spacing the WPM shows a 
convergence rate and absolute accuracy identical with those of the stabilized FEM, but in the irregular 
spacing case the WPM has better performance than that of the stabilized FEM. The fast Fourier 
transform (FFT) of the system response is depicted in Figure 9 along with the applied window used in 
this decomposition. Figure 10 shows that the contribution of the highest band solution becomes less 
significant as the spacing becomes finer and finer. Both Figures 9 and 10 show that this highest band 
solution can be a good indicator for local mesh refinement. Tables VI and VII display the superior 
convergence of the W M .  Figure 11 and Table VIII show that the error indicator parameter E is 
indeed a good index to examine the convergence of the solution. 

Table VI. (a) Error in numerical solution of ID advection-difision equation in uniform spacing case 

33 nodes 65 nodes 129 nodes 257 nodes 

Finite element method 0.334955 0.2 14855 0.106109 5.925850 x 

RKPM, dEIE = 8% 0.322079 0.207 193 0.104550 6.431538 x lop2 
RKPM, dEIE = 0.01% 0.267828 0.118584 3.107031 x 8.088636 x 

Wavelet particle method 0.336132 0.2 14906 0.106589 5.933086 x lop2 

Table VI. (b) Error in first derivative of numerical solution of 1D advection4ifision equation in uniform 
spacing case 

33 nodes 65 nodes 129 nodes 257 nodes 

Finite element method 0.785792 0.645285 0.407359 0.27 1882 
0.272002 Wavelet particle method 0.785879 0,645292 

RKPM, &IE = 8% 0.765642 0.639221 0.409797 0.308 105 
0.407700 

RKPM, dEIE = 0.01% 0.695062 0.464779 0.161 893 4.722526 x lop2 
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Table VII. (a) Error in numerical solution of 1D advection-diffusion equation in irregular spacing case 

33 nodes 65 nodes 129 nodes 257 nodes 

Finite element method 0.296929 0.1880530 8.329611 x lop2 4.000011 x 

W M ,  dEJE = 0.0 I % 0.238021 8.280159 x 1.501983 x lop2  4.403418 x 
Wavelet particle method 0.3 I3 160 0.16862 1 5.743446 x 2.469355 x lop2 

Table VII. (b) Error in first derivative of numerical solution of 1 D advection-difision equation in irregular 
spacing case 

33 nodes 65 nodes 129 nodes 257 nodes 

0.224363 Finite element method 0.67 1608 0.617237 0.375262 
Wavelet particle method 0.744976 0611346 0-36 1955 0.2 16244 
RKPM, dEIE = 0.01% 0.584714 0.337591 0.1 1 1  176 1.173159 x lo-* 

exaclaolulion - 
numerical solution - 

firat derivative - 
numerical aolulian exact solution - 

numerical solution - 

1 . RKPM + 2 Waveleis. 33 nodes . 40 . RKPM + 2 Wavebts. 33 nods8 

first derivative - 
numerical solution ---- 0.0 - exact solution - 

numerical solution - 
0.6 . 

-94  
1 . RKPM + 3 Wavelets, 33 nodes 40 ' RKPM + 3 Wavelets, 33 nodes 

first derivative - 
numerical solotian ---- 0.0 . exad solution - 

numerical solulion - 
0.6 . 

-0.2 -30 
Figure 8. Solution of advection-diffision equation by W M  (dE/E= 0.01%) with wavelets 
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1 

0.8 

0.6 

0.4 

0.2 

0. 

6.2 

-0.4 

Table VIII. Error estimation parameter using multiple scale RKF'M 

' RKPM (dVE=0.01%), 257 nodes 1 FFT of Solution and Applied Window . a 

0.8 total sdution - * - total solution - 
highest band solution -'--.-- . 

. 
highest band window - 

. 
..... 

V - 
--0.2 . . . . . - . . . 

33 nodes 65 nodes 129 nodes 257 nodes 

E (multiple scale RKPM) 0.21 7100 8.9765 X lo-' 3.1887 x lo-' 9.6386 x 

5.3. 2 0  advection-difusion equation 

The steady state 2D advection-difision equation is given as 

vv24 - U ' V 4  = 0. (58)  

The problem statement is depicted in Figure 12. The flow is unidirectional, constant ( 11 u II = 1) and 
skew to the mesh. The difisivity coefficient v is taken to be lop6. The inflow boundary condition is 
discontinuous, as shown, and a natural boundary condition is applied to the outflow boundary. The 
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0.4 

0.2 

0 

-0.2 

0.4  

-2 - 

E - 3 -  

- 4  - 

Figure 10. Highest band solution from multiscale W M  can be used as reference for local mesh refinement 

257 nodes / 
-5 ! 1-1. , -  

-4  5 -4 0 -3.5 -3.0 -2.5 
In(*) 

0 

Figure 1 1. Convergence plot of error estimation parameter E using multiscale RKPM 
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viewing 

0.25 0.7i 
angle 

4."- 0 

flow 
direction 

@ = O  d_ e = 4 5 O  

$= 1 
cp= 1 

G- 0 

Figure 12. Advection skew to mesh: problem statement 

cubic spline is the kernel function and its energy error ratio dEIE is chosen as 0.1% for all cases. See 
Table I1 for the dilation parameter u. Four uniform refinements, 11 x 11, 21 x 21, 41 x 41 and 
61 x 61 nodes, are used to compute the results. In addition, two adaptive refinements based on a 3 x 3 
multiple scale decomposition of the 2 1 x 2 1 grid are performed. 

The 2D RKPM is given as 

where C(x ,  y ,  X, j j ,  ad, uyo) is the boundary correction for the finite domain and 

is the cross-product of two 1D window functions. The n-level decomposition specifiel 
hc t ions  is given as 

4 0 k Y )  = #l (X)VhCY)+. . .  + 1 1 / 2 ( x ) $ 2 0 + . - .  + b . ( X ) 4 , 0 .  

In the Fourier transform domain an example of three-level decomposition is given as 

40(L 44 = 40(5>40(49 

= [ 4 2 < t >  + $ 2 < 0  + i , ( t > l [ 4 2 ( v )  + $2(tl) + $l(rl)l 

= 4 2 ( 0 4 2 0 1 )  + 4 2 ( 5 ) $ 2 ( d  + 42(t )$ l (r l )  

+ $ 2 ( 5 ) 4 2 ( d  + $2(<)$2(rl) + $2(5)$1(11) 

+ &1(5)42(v)  + $I(t)$2(rl) + $1(t)$1(q). (61) 

The numerical results of the four uniform spacing grids (121, 441, 1681 and 3721 nodes) and the 
successive adaptive refinements based on the 2 1 x 2 1 grid points (472 and 5 14 nodes) are depicted in 
Figure 13. As can be seen in the figure, the results of the adaptive refinements, in which only nodes are 
added to the high gradient region, compare favourably with that of the 3721 nodes (61 x 61 uniform 
grid). The 3 x 3 decomposition plots of the 441 nodes (21 x 21 uniform grid) based on (61) and the 
second adaptive refinement (514 nodes) are depicted in Figure 14. The low scale (scaling function) 

by the window 
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l l x l l  nodes 

41x41 nodes 

21x21 nodes 

61x61 nodes 

First adaptive refinement (472 nodes) Second adaptive refinement (514 nodes) 

Figure 13. Numerical solutions for different refinements 

component 42(x)*42(y) filters out the oscillation; therefore it gives a very smooth solution around the 
shock front. The medium and high scale (wavelets) components $2(x) * 4b2@) and $,(x) * $,@) show 
a mixture of high wave number response and aliasing. However, the medium scale displays mostly the 
high wave number approximation of the shock front whereas the high scale displays mostly the 
aliasing wave number that cannot be resolved with a 5 14-node resolution. This is a typical example of 
the Gibbs phenomenon. Nevertheless, the high wavelet component $I (x) * @) picks up the location 
of the high gradient region. We are currently investigating the optimal level of multiple scale 
decomposition in defining adaptivity. 

Comparing the two sets of multiple scale decomposition depicted in Figure 14, the adaptive 
refinement locates the shock front more precisely than that of 21 x 21 nodes. This is clearly illustrated 
in the (x) * $ @) wavelet components, in which the magnitude of the aliasing solution and the width 
of the shock are much smaller. In the same figure the adaptive low scale (scaling function) component 
&(x) * 42@) gives a better approximation of the discontinuous solution than that of the uniform mesh. 
Figure 15 shows the location of the adaptive refinements. The 50 highest nodal values (about 10% of 
the total number of nodes) of the @) wavelet (high wave number) components are chosen to 
locate the high gradient region. Thirty-one nodes are added in this region in the first adaptive 
refinement. A similar 3 x 3 decomposition is also applied to the total solution of the first adaptive 
refinement. Based on this new high gradient region, an additional 42 nodes are added to achieve the 
second adaptive refinement. One should note that in Figure 15 not only does the width of the high 
gradient region become narrower, but also its maximum value decreases from 0.907 to 0-657 when the 

(x) * 
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21x21 nodes Second adaptive refinement (514 nodes) 

> -  

, .  . , I  , 

Wl(X)*WI(Y) WI(X)*WI(Y) 

Figure 14. Plots of 3 x 3 decomposition of total solution 

adaptive refinements are applied. This example shows that the integral window transform process can 
zoom in to pick up the high gradient of the response and zoom out if no magnification of the response 
is necessary. The zoom-in and zoom-out capability of the multiple scale reproducing kernel method 
shows great promise for meshless unstructured multigrid or hp-like adaptivity. Moreover, the physical 
interpretation of the computed results can be further synthesized. 

6 .  CONCLUSIONS 

Reproducing kernel and wavelet particle methods, as shown in the numerical examples, provide 
accurate mesh-free interpolation functions that possess superior convergence rate. The wavelet particle 
method, which combines wavelet analysis and particle methods, allows us to separate the response into 
multiple fiequency/wave number bands via a multiresolution analysis. Through the integral window 
transform and the dilation and translation of the scaling function, the window function can magnify, 
examine and record the image of the various scales (frequencies and wave numbers) of the response 
locally within the support of the window function. Hence the multiple scale RKPM can provide a good 
physical interpretation of the computed response. Also, the concept of multiresolution, which is a built- 
in property of the multiple scale RKPM, provides a firm foundation in the construction of algorithms 
for unstructured hp-like adaptive refinements without a mesh. 

Aliasing control is shown to be very important in improving the accuracy and convergence rate of 
the discretized solution. Without the exact solution for a given system we are able to set up criteria for 
the convergence of the computed solution. Moreover, adaptive refinement criteria have been developed 
with the help of these multiple scale methods. In this adaptive refinement procedure, nodes are simply 
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Figure 15. Adaptive refinement by 3 x 3 multiple scale decomposition: (a) 441 nodes; (b) 472 nodes; (c) 514 nodes 

inserted to selected wavelet regions of high gradients, but without a mesh or a grid. In addition, the size 
of the window function is narrowed to examine the finer scales of the response. 

An energy error ratio criterion is also developed via Fourier analysis of the kernel window function 
of the RKPM. Optimal dilation parameters have been established for a class of window functions that 
give high convergence rates as well as optimal aliasing control of unwanted numerical frequencies/ 
wave numbers. This optimal aliasing control dilation parameter will dictate the best match between the 
number of nodes used for this scaling function, i.e. the optimal number of nodes covered within the 
support of the window function. 

One of the key successes of this class of particle methods is the formulation of the boundary 
correction hnction to scaling functions and wavelets. Hence, unlike the usual wavelet analysis, no 

Table IX. Linear scaling function coefficients 

n a n  b" X 

1 0.745749187 -0.84659105 0 < x ,< 1 
2 -0.10084186 0.12117043 1 < X  < 2 
3 0.020328568 -0.024874868 2 < x < 3 
4 -0.0045463 0.0045463 3 < x < 4  
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artificial boundaries are needed in the RKPM. The role of the correction function in smooth particle 
hydrodynamic (SPH) methods and wavelet analysis will be discussed in a separate paper. 
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APPENDIX I: LINEAR ORTHOGONAL WAVELETS6”’ 

The orthogonal linear wavelet derived from the orthogonal scaling fimction 4 ( x )  is given in this 
appendix. This orthogonal scaling function is written in piecewise linear form as 

4 ( x )  = an + bn(x - n + I), (62) 

where a,, and b, are as given in Table IX. The scaling function 4 ( x )  is symmetric with respect to x = 0 
and the coefficients are truncated beyond f 4 .  

The corresponding linear mother wavelet is defined as 

where c, and d, are as given in Table X and x, = x - 0.5. The linear mother wavelet is symmetric with 
respect to x = 0.5 and the coefficients are truncated beyond f 6.5. 

The orthogonal linear scaling and wavelet functions are depicted in Figure 16. 

APPENDIX 11: MIRROR-IMAGE BOUNDARY CORRECTION METHOD 

For a finite domain with boundary limit [c,, c2] the mirror-image response outside the domain is 
assumed as (see Figure 17) 

u(2q - x )  = u(x), x E [CI , CZ], outside the left boundary, (64a) 

u(2c2 - x )  = u(x), x E [CI, c2], outside the right boundary. (64b) 

Table X. Linear mother wavelet coefficients 

n Cn 4 xn 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

- 1.681933641037244 
0.927159421260589 

-0.004951915289909663 
- 0.07744029520715825 
- 0.0237809606 13 1 1632 

0.0196407845814763 1 
0.0046408019641 1725 

-0.004126570862967956 
- 0.00 120098659485209 

0.000986598419292949 
0.0002642918504412657 

-0.0000260696819795994 
4.669134966046848 x 10- 

5.21818612459 
- 1.864222673 100998 
- 0.1449767598344972 

0.1073186691880838 
0.0868434903891853 

-0-02999996523471812 
- 0.01753474565417041 

0.005851168536231734 
0~004375170028290078 

- 0.00144461 3 137703367 
-0~0005807230648417302 

0~00006147763389129245 
6 -9.338268 x 

0.0 < X, < 0.5 
0.5 < x,, < 1.0 
1.0 < X, < 1.5 
1.5 < X, < 2.0 
2.0 < X, < 2.5 
2-5 < X, < 3.0 
3.0 < x,, < 3.5 
3.5 < X, < 4.0 
4.0 < X, < 4.5 
4.5 < x, a . 0  
5.0 < X, < 5.5 
5.5 < X, < 6.0 
6.0 < X, < 6.5 
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Figure 16. Orthogonal scaling and wavelet functions and their Fourier transforms 

2c1-x c, x c2 2c2-x 
Figure 17. Application of mirror-image outside domain of response 

The reproducing kernel integral can be shown to be 

Jrr ucv>4(x - Y )  dY = Jci uCv)$J(x -r) dY + 1;; uCv)4(x - Y )  dY + 1: ubv)4(x -A dY. (65) 
--M -cc 

Using equations (64), the first and third terms of (65) are shown to be 

c2 c1 

uCvM(x - Y )  dv = Ic, uO4(x - 2c2 + Y )  dr  + J ucV)4(x - 2c2 + y )  dy. (66b) 

Examining the second term on the RHS of (66a), if the support of 4(x - 2cl +y)  is small, this term 
becomes an empty set in the interval [q, co) and hence it is zero. A similar argument can be applied to 

-cc 
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the second term on the RHS of (66b). Therefore these two terms can be dropped. Substituting 
equations (66) into (65), the kernel function becomes 

where 
J ( X  - y)  = 4 ( x  - y) + $(x - 2Cl + y) + 4 ( x  - 2c2 + y). (68) 

(69) 

The new shape function is 

N ~ ( x )  = [ 4 ( ~  - 2 ~ 1  + x i )  + $(x - xi) + 4 ( ~  - 2 ~ 2  + ~ i ) ] A x i .  

The boundary correction terms for the W M  can be derived in a similar manner to those of RKPM. 

APPENDIX 111: SPLINE FAMILY 

Define the convolution of two hc t ions  as 

where * denotes the convolution of two functions. 
The convolution of any two members from the spline family will produce a higher order spline 

function of the same spline family. Starting from a simple box function, the whole spline family can be 
constructed through a recursive convolution algorithm. From the convolution theorem 

Q f  * 8) = F ( f  )Fk), (71) 

where F( .) is the Fourier transform operator, the Fourier transforms of the spline family can be derived 
automatically. 

Box function 

where 

with 

dE 1 an -='-; f (g) ,  E 

2 2  
t <  f ( 5 )  = - - + -cos(<) + 2si(t), 

Hut function = box * box 

( x / a + I ,  - 1  < x / u  < 0, 
$(-) = - x / u +  1, 0 < x / a  < 1, l o .  otherwise, 

(734 
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(73b) 

dE 
E 

where 

8 1  4 1  . cos2(5) + - - cos(5) + - - sin(() cos(5) f (g) = - - - - - - 4 1  4 1  

4 1  . 4 , 8 1  4 1  4 1  8 .  
3 5 3  3 53  3 t3 3 t2 

3 t2 3 3 5  3 5  3 5  3 
- _ -  sin(5) - - Si(5) + - - cos2(5) - - - - - - cos(5) + - Si(25). (73d) 

Quadratic spline = box * hat 

4C)  = 

3 x  1 
2 

< - < - - ,  [2(:) + 312, - - 
8a 2 a  

-[-(32+;], 1 
-- 1 x 1  < - < - 

a 2 a 2 ’  

1 x 3  
- < - < -, 8a 2 a 2  ‘[2(:)-312, 

0, otherwise, 

dE 20 an  
E 117c Ax 
- = 1 --f(-), 

(744 

where 

1 1  24 1 8 1  9 1  , 

f ( 5 )  = - - -z sin(() + - - cos(5) - - - + - - sin(<) cos2(5) 
5 5  5 t5 5 5 5  5 5 2  

5 t4 5 t4 5 t2 5 5  

+ - - - - - - - - C O S ~ ( < )  + - - cos ( 5 )  - - - cOs ( 5 )  
5 5  5 5 3  553 5 t3 5 t5 

5 rs 20 4 5 5 

5 t4 5 t3 5 

6 1  12 1 . 8 1  16 1 _ - -  sin(t> cos2(t) + - - sin(<) cos(5) - - - sin(5) cos(<) - - - cos2(5) 

8 1  4 1  6 1  8 1  2 4 1  

8 1  81 1 27 16 . + - - c0s3(5) + - si(3t) + - Si(<) + - C O S ~ ( ~ )  - - ~1(2<) 

6 1  2 1  19 
sin(5) + - - cos(5) - - cos(5). (744 - - _  
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Cubic = hat * hat = box * quadratic 

X - 2 <  - < -1 ,  '"("-) 6a a +213. a 

3 - C ) ' ( 1 + 3 ] ,  -1 < - X < 0, 
a 

X 

-L[(2) 6a a -233 1 < - a < 2 ,  

. 0, otherwise, 

dE 
E 

where 

32 1 96 1 16 1 32 1 . 
f(5) = - - sin(() - - - cos ( 5 )  - - - C O S ~ ( ~ )  - - - sin(5) cos(5) 

72 1 108 1 
sin(<) cos(5) + - - sin(() cos2(5) - - - sin(5) cos2(<) 

21 5 7 t7 7 t7 35 52 

35 54 35 54 35 52 

315 63 5 315 t3 21 5 4  

35 5 35 5 35 5 5  35 53 

16 1 - _ -  

512 436 1 472 1 8 1  
cos ( 5 )  + - - COS(<) - - - COS({) - - - c0s3(5) -_ 

324 1 96 1 32 1 32 1 
C O S ~ ( ~ )  - - c0s3(5) + - - C O S ~ ( ~ )  + - - C O S ~ ( ~ )  

72 1 1216 1 32 1 236 1 
35 53 105 5 21 5 5  315 t2 
32 1 2048 32 1 32 1 

+ - - C O S ~ ( ~ )  - ~ - cos2(5) + - - cos(5) + - - sin(<) 

- -_  + - ~ ( 4 5 )  + - - sin(5) c0s3(5) + - - sin(<) cos(5) 

4096 1 128 1 1 1024 1 + - - cos ( 5 )  - - - sin(5) c0s3(5) - - Si(5) + - - sin(<) c0s3(5) 
315 5 105 t4 45 315 (' 

32 1 16 1 32 1 64 64 1 - _ _  sin(5) cos2(5) + - - + - - + - ~ ( 2 4 )  + - 'T cos(5) 

35 r5 315 21 56 7 t6 

7 t6 105 t3 35 5 45 7 5  

si(35) + - - c0s3(5) + - 16 1 243 64 1 128 1 
7 5 7  35 7 c7 105 5 C O S ~ ( ~ ) .  

(754 

(754 



MULTIPLE-SCALE REPRODUCING KERNEL METHODS 93 1 

REFERENCES 

1. W. K. Liu, S. Jun and Y. E Zhang, ‘Reproducing kernel particle methods’. int. j .  numer methodsjuids, 20, 1081-1 106 
(1995). 

2. W. K. Liu, J. Adee and S. Jun, ‘Reproducing kemel particle methods for elastic and plastic problems’, in D. J. Benson and R. 
A. Asaro (eds), Advanced Computational Methods for Material Modeling, AMD Vol. 180 and PVP Vol. 268, ASME, New 

3. W. K. Liu, S. Jun, S. Li, J. Adee and T. Belytschko, ‘Reproducing kernel particle methods for stmctural dynamics’, Int. J: 
Numer Methods Eng., 38, 1655-1680 (1995). 

4. W. K. Liu and C. Oberste-Brandenburg, ‘Reproducing kernel and wavelet particle methods’, in J. P. Cusumano, C. Pierre and 
S. T. Wu (eds), Aerospace Structures: Nonlinear Dynamics and System Response, AD Vol. 33, ASME, New Yo*, 1993, pp. 

YO&, 1993, pp. 175-190. 

39-56. 
5. C. K. Chui An Inmduction to Wavelets, Academic, New York, 1992. 
6. Daubechies, CBMShVSF Series in Applied Mathematics, No. 61, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992. 
7. A. D. Poularikas and S. Seely, Signals and Systems, 2nd edn, PWS-Kent, 1987. 
8. T. J. R. Hughes, L. Franca and G. M. Hulbert, ‘A new finite element formulation for computational fluid dynamics: VIII. The 

Galerkinileast-square method for advective-diffision equations’, Comput. Methods Appl. Mech. Eng., 73, 173-1 89 (1989). 
9. F. Shakib and T. J. R. Hughes, ‘A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of 

space-time Galerkinileast-squares algorithms’, Comput Methods Appl. Mech. Eng., 87, 35-58 (1991). 
10. C. K. Chui, Wavelets: A Tutorial in Theory and Applications, Academic, New York, 1992. 




